
1111Et pour aller
encore plus loin ?

Il n’est pas question, dans le cadre de ce guide,
de rentrer dans les détails mais il n’est pas inutile
de donner quelques points de repère de ce qui
constitue un microcontrôleur (ou micro, noté µC).
Vous comprendrez pourquoi un programme écrit
pour une carte ne fonctionne pas avec une autre.
Peut-être même aurez-vous envie d’approfondir
vous-même certains des points que je vais aborder.

Pour comprendre la structure d’un
microcontrôleur, on peut comparer ce dernier
à une maison. Il y a de petites maisons (µC à
8 bits) et de grandes maisons (µC à 32 bits), mais
ce qu’on trouve à l’intérieur est toujours la même
chose : une cuisine où on va préparer les repas en
suivant une recette, un salon ou une salle à manger,
des chambres, une ou plusieurs salles de bain, des
placards pour ranger ses affaires, d’autres pièces
spécialisées (buanderie, atelier, garage). La maison a
aussi des portes et des fenêtres qui communiquent

avec l’extérieur, et une horloge bien placée pour
que chacun puisse voir le temps qui passe. Le micro,
c’est un peu pareil. Il a aussi une horloge qui délivre
des signaux carrés et chaque créneau donne le
rythme de travail. Il a des placards qui lui servent à
ranger des informations, ce qu’on appelle mémoire,
une cuisine qui lui sert à effectuer sa tâche en
suivant une recette appelée programme avec des
ingrédients bien rangés dans des placards, appelés
instructions ou données. Le micro a également
des unités spécialisées qui servent à certaines
tâches bien spécifiques, tout comme une buanderie
peut être équipée d’une machine à laver le linge (qui
rend le linge propre) et d’un sèche-linge (qui rend le
linge sec). Enfin, pour communiquer avec l’extérieur,
le micro a aussi des portes appelées PORT, chacun
étant constitué d’un ensemble de lignes d’entrée-
sortie ; lorsque la porte d’une maison est ouverte,
c’est pour laisser entrer ou sortir quelqu’un, et de la
même façon, un PORT est soit une entrée soit

11.1 / S’INTÉRESSER À CE
QU’IL Y A SOUS LE CAPOT

une sortie pour une information. De même
qu’une maison peut avoir une porte principale et
des portes fenêtres qui donnent sur le jardin, le
micro a plusieurs PORT qui communiquent
avec l’extérieur (capteurs ou actionneurs). On
va maintenant voir en détail chacun des sous-
ensembles qui constituent un microcontrôleur, tout
en gardant à l’esprit notre analogie avec une maison.

Un microcontrôleur est constitué de plusieurs
unités, chacune spécialisée dans une tâche, et

travaillant ensemble (figure 11-1 reprenant la
structure de l’ATmega328P). L’ALU (Arithmetic and
Logic Unit) est l’unité qui est capable d’effectuer des
calculs arithmétiques et logiques sur les octets
de données (addition, soustraction, incrémentation,
ET, OU, NOT, etc.). C’est le programme qui indique
à l’ALU quelles opérations effectuer et sur quelles
données. L’ALU est en quelque sorte la cuisine, car
c’est là qu’on travaille pour préparer un plat (une
tâche) avec des ingrédients (variables) en suivant
une recette (programme).

Image de conduite d'un simulateur réel à la SNCF

Le but de ce guide est de vous emmener le plus loin possible
dans la maitrise des cartes à microcontrôleur et les chapitres
précédents ont bien rempli ce rôle. Mais le chemin ne s’arrête
jamais et il y a toujours un domaine à explorer. C’est ce que
je vais vous démontrer maintenant tout en vous proposant un
voyage fictif vers un futur qui ne l’est peut-être pas tant que cela.

Et pour aller encore plus loin? - 111 110 - Les Guides Pratiques du train Miniature - Automatisez votre réseau

Le programme étant constitué d’instructions, il faut
stocker ces dernières ainsi que les données. Pour
ranger ses affaires dans une maison, on dispose
de placards qui peuvent avoir plusieurs formes
(penderie, commode, etc.). De même, les affaires
de Madame ne sont généralement pas au même
endroit que les affaires de Monsieur, mais cette
règle est un peu sexiste et on pourrait tout à fait
mettre tous les vêtements dans la même penderie.
Pour un micro, les affaires sont les informations qui
sont de deux natures : instructions et données.
Pour les stocker, c’est le rôle de la mémoire qui
peut être permanente ou bien volatile. Le micro
a une architecture Von Neumann si les données

 Le program counter est un compteur qui permet
de repérer l’instruction en cours, un peu comme
si nos recettes de cuisines avaient des lignes
numérotées. Lorsqu’une instruction a été exécutée,
le program counter est incrémenté d’une unité et on
va chercher l’instruction suivante pour l’exécuter
elle aussi. En cas de saut vers un sous-programme,
il faut le sauvegarder de manière à reprendre le
programme principal (là où on s’était arrêté) lorsque
le sous-programme est entièrement exécuté.

Une maison dispose d’une sonnette, et lorsque le
facteur sonne, vous interrompez ce que vous êtes
en train de faire pour aller réceptionner le courrier,
et lorsque c’est fait, vous reprenez ce que vous
étiez en train de faire. Le micro aussi peut être
interrompu dans sa tâche pour aller exécuter
une tâche encore plus urgente ; c’est ce qu’on
appelle une interruption et dans ce cas, il faut
aussi sauvegarder le program counter ainsi que
d’autres registres importants. Parfois, on a envie
d’être tranquille et on inhibe la sonnette de la
maison ; on peut faire la même chose et inhiber
les interruptions si la tâche qu’effectue le micro
ne doit pas être interrompue (respect d’un timing
précis par exemple). Tout cela est à régler dans
les différents registres du micro et il faut donc
apprendre à les connaître.

Comme un micro doit communiquer avec
l’extérieur, ces broches sont organisées en
PORT avec différents registres pour les contrôler :
ce sont les portes fenêtres de notre maison avec
les serrures pour les ouvrir ou les fermer. Tant
qu’on utilise les fonctions d’Arduino (digitalWrite
par exemple), le logiciel IDE sait que telle broche
correspond à tel registre et le programmeur n’a
à s’occuper de rien. Mais on peut aussi travailler
directement avec les registres des PORT, ce
que j’avais fait dans le tome 1 pour la croix de
pharmacie. Et comme les PORT ne sont pas
organisés de la même façon d’un micro à un autre,
un programme qui fonctionne sur Uno ne
fonctionnera plus sur Mega ! Pour la croix de
pharmacie, j’utilisais le PORTD de la carte Uno

qui correspond aux broches 0 à 7. Sur la carte
Mega, les broches 0 à 7 font partie des PORT E,
G et H, comme le montre la figure 11-2 tirée
de la documentation « pinout » des cartes.

et les instructions sont stockées dans un unique
espace mémoire (lui-même constitué de mémoire
permanente ou volatile) : il n’y a donc qu’un seul
bus d’adresse permettant de localiser le bon
octet au bon endroit. Le micro a une architecture
Harvard si la mémoire pour les instructions
est séparée de la mémoire pour les données :
c’est le cas pour l’ATmega328P des cartes Uno
et il y a deux bus d’adresses puisque les espaces
de stockage sont différents. Les données sont
stockées en mémoire volatile (SRAM) alors
que les instructions sont stockées en mémoire
permanente (Flash memory) pour ne pas avoir
à recharger le programme à chaque utilisation.

Figure 11-1

ALU, SRAM, flash, SPI, etc.
(Source Microchip)

Figure 11-2

Un micro possède aussi des timers pour compter
le temps (tout comme il y a plusieurs pendules
dans une maison) et on peut les programmer en
écrivant directement dans les registres qui leur sont
associés. Les timers ont la propriété d’effectuer
leur comptage du temps indépendamment
du programme, en tâche de fond. Mais d’un
micro à l’autre, les timers ne sont pas les mêmes,
ce qui peut encore expliquer qu’un programme
pour une carte ne fonctionne pas sur une autre.
Pour éviter ces désagréments, le mieux est soit de
respecter les fonctions d’Arduino, soit de passer

Et pour aller encore plus loin? - 113 112 - Les Guides Pratiques du train Miniature - Automatisez votre réseau

par des bibliothèques. Une bibliothèque n’est pas
pour autant universelle : quand on l’utilise, on doit
se renseigner sur les cartes qu’elle prend en charge.
Par exemple, Servo ne fonctionne pas sur une carte
ESP et il faut charger la bibliothèque ESP32Servo,
comme on l’a vu un peu plus haut. Certaines
fonctions (ou bibliothèques) d’Arduino utilisent
les timers, ce qui peut inhiber d’autres tâches :
il faut bien regarder la documentation des
fonctions ou bibliothèques. Par exemple, Servo
empêche de produire de la PWM sur les broches 9
et 10, qu’un servomoteur y soit branché ou non.

Un timer a un rôle particulier : le WDT pour Watch
Dog Timer ou encore chien de garde. Dans
un programme, on peut l’utiliser ou pas, et si on
l’utilise, son rôle est d’éviter qu’un programme soit
bloqué parce qu’il tourne en rond (boucle sans fin,
blocage dû à un parasite). Le principe est simple,
le WDT décompte son compteur et s’il arrive à
zéro, il effectue un reset de la carte. Pour que le
programme fonctionne normalement, il faut relancer
la minuterie régulièrement pour l’empêcher d’arriver
à zéro. Dans une boucle sans fin, on ne relance plus
la minuterie donc le WDT finit par arriver à zéro :
un reset a lieu et le programme peut redémarrer et
s’exécuter normalement.

D’autres unités spécialisées existent au sein du
micro (l’équivalent de la buanderie d’une maison),
par exemple pour communiquer (SPI, I2C,
UART, WiFi, Bluetooth, etc.) ou pour produire de
la PWM ou encore pour transformer un signal
analogique en numérique ou réciproquement.
Pour chaque unité, on trouve des registres de
contrôle dont il faut connaître l’usage. Le mieux
est de se plonger dans la datasheet, mais certaines
font plusieurs centaines de pages. Tout cela ne se
justifie que pour des besoins très particuliers : en
modélisme ferroviaire, l’utilisation des fonctions
d’Arduino suffit amplement, et si ma croix de
pharmacie a utilisé le PORTD, c’est juste pour

rendre le programme plus lisible (je gagne aussi en
temps d’exécution mais cela ne se voit pas à l’œil
nu).

Une dernière chose à avoir en tête, c’est que
la mémoire d’un microcontrôleur n’est en rien
comparable à la mémoire d’un micro-ordinateur.
On ne parle pas en Giga-octets et il faut donc
apprendre à économiser cette mémoire ;
cela peut se faire en choisissant le bon type de
variable ou en stockant les chaînes de caractères
en mémoire programme (PROGMEM). De plus, la
mémoire qui sert à stocker les variables sert aussi au
microcontrôleur qui sauvegarde certaines données
lors des appels de subroutines (interruptions
par exemple). C’est ce qu’on appelle la pile et si
nos précieuses données viennent l’écraser, c’est
le dysfonctionnement assuré du programme
et ce n’est pas toujours facile à comprendre.

Ce petit tour d’horizon nous a permis
de comprendre que la puissance d’un
microcontrôleur est due à plusieurs facteurs :
sa taille en bits, sa fréquence d’horloge, la capacité
de ses mémoires sont des éléments essentiels. Mais
il faut aussi prendre en compte d’autres éléments
comme les unités spécialisées qui sont à choisir
en fonction de l’application qu’on veut obtenir
(numérisation de signal, communication CAN ou
I2C, nombre de broches pour communiquer avec
l’extérieur, présence du WiFi, etc.). Les premières
questions à se poser concernent donc le projet
de modélisme ferroviaire qu’on a en tête et à
partir de là, on se pose la question du µC qui peut
le mieux convenir : c’est généralement celui qui
dispose des interfaces utiles au projet (CAN, WiFi
par exemple) car la vitesse n’est pas forcément
un élément bloquant pour nos trains miniatures.
Mais il faut aussi tenir compte des logiciels
délivrés avec le µC, notamment les bibliothèques
qui vous permettront de faire fonctionner des
actionneurs particuliers à votre projet.

Il existe d’autres langages de programmation que
le langage Arduino qui est lui-même du langage
C ou C++. On a évoqué Processing dans le
chapitre 9 et comme l’environnement de Processing
ressemble à l’environnement d’Arduino, vous ne
devriez pas être trop perdu à consacrer un peu de
temps à apprendre ce langage. Cela permet de faire
des interfaces graphiques à un programme,
comme par exemple un TCO pour un réseau, ou
bien une interface de commande. Cette dernière
peut aussi être faite avec le langage HTML (Hyper
Text Markup Language) et vous trouverez sur le site
de LOCODUINO quelques exemples à ce sujet (le
HTML complétant le programme en C/C++).

En 2024, le langage Python était le plus utilisé dans
le monde. Les cartes Arduino n’ont pas échappé à ce
phénomène et peuvent maintenant être programmé
en MicroPython, à condition d’être compatibles
avec ce langage. Le Python est un langage interprété
et non compilé, donc un peu plus lent : pour le train,
cela n’a pas une grosse incidence. On peut trouver
de nombreuses applications en MicroPython et
s’en servir. Enfin, le Python est le langage idéal
pour commencer la programmation car il
est plus simple dans sa syntaxe ; il n’y a pas
besoin de définir le type de variable par exemple,
et il n’y a pas besoin de terminer une ligne par un
point-virgule, le retour chariot suffisant. On trouve
des boucles for ou while et des tests if-else (comme
en C/C++) et il est aussi possible de définir des
fonctions. Les fortes similitudes avec le C/C++ font
que la connaissance d’un des deux langages permet

11.2 / APPRENDRE D’AUTRES
LANGAGES DE PROGRAMMATION

d’acquérir facilement le deuxième sans être trop
perdu. Je vous encourage donc à essayer, ne serait-
ce que pour varier les plaisirs.

Enfin, si on recherche la rapidité d’exécution
et la compacité du code, l’assembleur est le
langage idéal car c’est celui qui suit au
plus près l’intimité du microcontrôleur.
Hélas, la rédaction des programmes et leur mise
au point est un véritable casse-tête. Si vous
vous lancez dans l’aventure, attendez-vous à de
nombreuses heures à chercher les bugs. Comme
je l’ai dit dans une série d’articles publiée sur
LOCODUINO (https://locoduino.org/spip.
php?article280), l’assembleur n’apporte pas
grand-chose dans notre hobby. Dans certains cas
cependant, l’assembleur peut avoir une utilité
comme, par exemple, respecter des timings très
précis ou gagner en vitesse d’exécution. Quant
à la compacité du code, faire clignoter une LED
avec le programme Blink demande 924 octets de
programme, alors qu’en assembleur, il n’en faut
que … 30 ! Malgré ces avantages, l’assembleur
a beaucoup de défauts : vous devez penser à
tout car personne ne le fait à votre place. Il faut
parfaitement connaître le microcontrôleur et son
architecture. Il faut un logiciel pour générer le
code (par exemple MicrochipStudio 7) et il est
préférable d’avoir un programmeur (on en trouve
chez Microchip, anciennement Atmel). Il faut aussi
apprendre à utiliser tout cela. Bref, c’est beaucoup
de temps consacré pour une cause qui ne se justifie
pas dans notre domaine. À vous de voir …

Et pour aller encore plus loin? - 115 114 - Les Guides Pratiques du train Miniature - Automatisez votre réseau

Le train miniature a beaucoup évolué ces vingt
dernières années : on est passé de l’analogique
au numérique. Pourquoi ? Et bien déjà pour
résoudre certains problèmes propres à l’analogique.
Par exemple, pour garer un engin moteur sur
une voie, il faut créer une section de garage non
alimentée. En conséquence, cela complique le
câblage du réseau. En plus, on ne peut pas faire
circuler sur une même voie deux locomotives
indépendamment l’une de l’autre : impossible
donc d’envoyer une locomotive en chercher une
autre pour s’y atteler et créer une unité multiple.
Enfin, ce qui est garé en analogique ne reçoit plus
de courant donc pas d’éclairage des feux ou des
voitures, sauf à ajouter un système électronique
qui ajoute du courant de haute fréquence sur la
voie. Tout cela a été résolu par l’arrivée du
numérique : les locomotives sont commandées
indépendamment les unes des autres, la voie est
constamment alimentée ce qui permet de garder
l’éclairage, et au final il n’y a que deux fils à relier
aux rails pour que cela fonctionne. Oui, c’est plus
cher mais cela permet plus de choses. Mais si on
veut que des trains se suivent en toute sécurité, alors
il faut recréer des cantons, donc un câblage plus
compliqué. Le numérique n’a pas résolu le court-
circuit des boucles de retournement mais un module
peut s’en occuper. Enfin, la captation de courant se
fait mieux car la voie, étant alimentée en alternatif,
s’encrasse moins qu’en analogique, mais il reste tout
de même des problèmes de captation, notamment
sur les aiguilles pour des engins courts, ce qui oblige
à polariser la pointe de cœur : il faut s’y connaître
et encore une fois, cela complique le câblage. Pour
repérer la position des trains sur le réseau, il faut
des capteurs ou bien un logiciel coûteux qu’il faut
calibrer.

Le numérique a donc résolu beaucoup de choses
mais des problèmes, il en reste encore ! Le
train du futur sera imaginé justement pour résoudre
les problèmes restants. La meilleure solution pour

11.3 / IMAGINER LE TRAIN
MINIATURE DE DEMAIN

résoudre les problèmes de câblage du réseau, le
court-circuit des boucles de retournement et les
problèmes de captation dus à l’encrassement ou
aux appareils de voie, c’est d’avoir une batterie
à bord du train (concept « dead rail » aux USA).
Plus besoin de soigner la pose de la voie, elle ne sert
qu’à guider les roues. Plus de problème de câblage,
la voie n’est pas alimentée. Plus de court-circuit,
on peut dessiner le réseau qu’on veut. Bien sûr, on
rajoute le problème de la recharge des batteries,
mais celles-ci ont fait de gros progrès et en feront
encore : les batteries de demain auront de plus
en plus de capacité et le temps de recharge
sera abaissé. C’est déjà le cas des batteries à
graphène. Cette recharge pourra d’ailleurs se faire
par induction, lorsque le train fait une halte par
exemple ou lorsque le réseau ne sert pas.

Mais comment les décodeurs recevront-ils
les ordres ? Et bien avec des techniques qui
ressemblent à la radio (cela existe déjà) ou au
WiFi (objet connecté) ou encore au Bluetooth.
Une transmission OTA (Over The Air) permettra
d’ailleurs un bien plus gros débit que celui du
numérique d’aujourd’hui. Avec l’ordre reçu sans fil et
l’énergie déjà à bord, les décodeurs fonctionneront
de la même manière et permettront sans doute
encore plus de choses qu’aujourd’hui.

Mais il faudra toujours des capteurs pour localiser
les trains ? Pas forcément, si on utilise le GPS
RTK (Global Positioning System Real Time
Kinematic) qui permet une précision de l’ordre
du cm. Avec cette précision, on sait exactement
où se trouve le train sur le réseau. Aujourd’hui,
ces techniques coûtent encore cher mais elles
se démocratisent chaque jour un peu plus et on
trouve déjà sur YouTube des tutos pour le GPS
RTK. La communication des décodeurs sera très
certainement dans les deux sens, ce qui fait que
le train pourra envoyer à la centrale sa position et
celle-ci pourra l’afficher sur un écran de TCO et

aubiner la signalisation lumineuse. On peut donc
aussi imaginer que la centrale DCC du futur
fera plus de choses que certains logiciels
de contrôle de réseau actuels, pour un prix
inférieur.

Enfin, il est à parier, vu la miniaturisation qui existe
déjà à l’heure actuelle, que toutes les locomotives
seront équipées d’une micro-caméra à
l’intérieur des postes de conduite, et que l’image
de notre propre réseau sera renvoyée sur notre
smartphone ou tablette. La conduite se fera alors
comme si on avait pu rentrer dans notre modèle
réduit, ce qui sera plus intéressant que regarder
les trains passer comme on le fait actuellement.
Les aéromodèles et les drones permettent déjà
cette fonctionnalité, ce qui a donné un nouvel
engouement pour le pilotage des modèles réduits.

Tout cela est-il concevable ? Il y a une vingtaine
d’années, les aéromodélistes volaient en thermique
avec des moteurs capricieux, polluants et bruyants.
Et si quelqu’un évoquait le vol en électrique, il se
faisait railler car les batteries étaient à l’époque
trop lourdes. Aujourd’hui, quasiment tous les

aéromodélistes volent en électrique car batteries
et moteurs ont fait des progrès et pourtant la
consommation de ces derniers est bien supérieure à
la consommation d’un train à l’échelle H0.
Concevable est donc le terme qui convient,
mais qui connaît l’avenir ? Pour ma part, j’y crois
fortement et comme l’avenir se construit dès
aujourd’hui, alors il me reste du pain sur la planche.
Un peu d’aide de votre part serait la bienvenue !

RÉSUMÉ DU CHAPÎTRE 11

Plus vous programmerez des microcontrôleurs
et plus vous aurez envie de connaître leurs
secrets. La meilleure façon de progresser, c’est
de ne pas s’en tenir à ce qu’on connait mais de
découvrir de nouveaux langages et de nouvelles
techniques. Quant au train miniature du futur,
on peut se contenter d’attendre sa venue ou
bien précéder le mouvement et participer à
son élaboration. Certains s’y sont déjà mis.

Un projet n’est pas toujours simple : ici le Viaduc de Garabit

Et pour aller encore plus loin? - 117 116 - Les Guides Pratiques du train Miniature - Automatisez votre réseau

